Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Computers  /  Vol: 8 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

Active Eye-in-Hand Data Management to Improve the Robotic Object Detection Performance

Pourya Hoseini    
Janelle Blankenburg    
Mircea Nicolescu    
Monica Nicolescu and David Feil-Seifer    

Resumen

Adding to the number of sources of sensory information can be efficacious in enhancing the object detection capability of robots. In the realm of vision-based object detection, in addition to improving the general detection performance, observing objects of interest from different points of view can be central to handling occlusions. In this paper, a robotic vision system is proposed that constantly uses a 3D camera, while actively switching to make use of a second RGB camera in cases where it is necessary. The proposed system detects objects in the view seen by the 3D camera, which is mounted on a humanoid robot?s head, and computes a confidence measure for its recognitions. In the event of low confidence regarding the correctness of the detection, the secondary camera, which is installed on the robot?s arm, is moved toward the object to obtain another perspective of the object. With the objects detected in the scene viewed by the hand camera, they are matched to the detections of the head camera, and subsequently, their recognition decisions are fused together. The decision fusion method is a novel approach based on the Dempster?Shafer evidence theory. Significant improvements in object detection performance are observed after employing the proposed active vision system.

 Artículos similares

       
 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Xinmin Li, Yingkun Wei, Jiahui Li, Wenwen Duan, Xiaoqiang Zhang and Yi Huang    
Object detection in unmanned aerial vehicle (UAV) images has become a popular research topic in recent years. However, UAV images are captured from high altitudes with a large proportion of small objects and dense object regions, posing a significant cha... ver más
Revista: Applied Sciences

 
Ugur Akis and Serkan Dislitas    
In applications reliant on image processing, the management of lighting holds significance for both precise object detection and efficient energy utilization. Conventionally, lighting control involves manual switching, timed activation or automated adjus... ver más
Revista: Applied Sciences

 
Ahad Alotaibi, Chris Chatwin and Phil Birch    
In aerial surveillance systems, achieving optimal object detection precision is of paramount importance for effective monitoring and reconnaissance. This article presents a novel approach to enhance object detection accuracy through the integration of De... ver más