Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 13 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on Prediction and Regulation of Thermal Dissatisfaction Rate Based on Personalized Differences

Guanghui Liu    
Xiaohui Wang    
Yuebo Meng    
Yalin Zhang and Tingting Chen    

Resumen

Thermal discomfort body language has been shown to be a psychological representation of personnel?s particular thermal comfort. Individual thermal comfort differences are ignored in public building settings with random personnel flow. To solve this issue, we suggested a Bayesian group thermal dissatisfaction rate prediction model based on thermal discomfort body language expression and subsequently implemented intelligent indoor temperature and humidity control. The PMV-PPD model was utilized to represent the group?s overall thermal comfort and to create a prior distribution of thermal dissatisfaction rate. To acquire the dynamic distribution of temperature discomfort body language, data on thermal discomfort body language expression were collected in a real-world office setting experiment. Based on Bayesian theory, we used personalized thermal discomfort body language expressions to modify the group?s universal thermal comfort and realized the assessment of the thermal dissatisfaction rate by combining commonality and personalization. Finally, a deep reinforcement learning system was employed to achieve intelligent indoor temperature and humidity control. The results show that when commonality and personalized thermal comfort differences are combined, real-time prediction of thermal dissatisfaction rate has high prediction accuracy and good model performance, and the prediction model provides a reference basis for reasonable indoor temperature and humidity settings.

 Artículos similares

       
 
Xiaohui Yan, Tianqi Zhang, Wenying Du, Qingjia Meng, Xinghan Xu and Xiang Zhao    
Water quality prediction, a well-established field with broad implications across various sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of over 170 studies conducted in the last five years, we focus on the a... ver más

 
Seyed Mohammad Hashemi, Ruxandra Mihaela Botez and Georges Ghazi    
Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodo... ver más
Revista: Aerospace

 
Kang Cao, Yongjie Zhang and Jianfei Feng    
As aviation technology advances, numerous new aircraft enter the market. These not only offer airlines technological and fuel efficiency advantages but also present the challenge of how to conduct pilots? aircraft-type transition training efficiently and... ver más
Revista: Aerospace

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más