Resumen
In this paper, an optimization approach for designing a hybrid renewable energy system with zero load rejection is presented for a specific location in Malaysia. The proposed renewble energy system includes photovoltaic system, gas turbine generator and battery bank. The aim of the optimization process is to design the system with a loss of load probability that is less than 1%. An improved numerical algorithm is proposed in this paper. Moreover, a comparison between electrification options, including the existing gas-turbine-based generator (existing system), electricity grid and the proposed system, is presented in terms of the annualized total life-cycle cost. The results show that the proposed system can reduce the annual running cost by USD 2.1 million, while the electricity grid connection option can reduce the annual cost by USD 1.16 million as compared to the existing gas-turbine-based generator. In addition to this, the proposed optimization algorithm provides a reliable power system with zero load rejection based on simulation results.