Resumen
This study aimed to analyze characteristics of an innovative a-calcium sulfate hemihydrate (a-CSH) bioceramic and bone healing and regeneration characteristics following its implantation on artificially created defects of rat models and human jaw defects. The a-CSH bioceramic was characterized using field emission scanning electron microscope (FE-SEM), energy-dispersive spectroscopy (EDS), and thermal-imaging instruments. The material was implanted on artificially created defects in a rat?s right hind leg bone and observed histologically after three days and seven weeks. The material was also implanted in patients with bone defects in the posterior maxillary, then observed immediately and six months post-treatment by panoramic and computed tomography image. The FE-SEM confirm this material is a uniform-shaped short column crystal, while the EDS measurement reveals calcium as the most component in this material. Thermal observation shows temperature change during the setting time is less than 2 °C, and the maximum temperature reached is 31 °C. In the histological analysis, a-CSH bioceramic shows new trabecular bone formation and absorbed material at seven weeks post-treatment. Moreover, panoramic and computed tomography image shows intact bone six months post-treatment. Therefore, this study suggests that the innovative a-CSH bioceramic can be useful in bone defect treatment.