Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Optimized Unconventional Geometric Gates in Superconducting Circuits

Yueheng Liu and Xinding Zhang    

Resumen

Nonadiabatic Abelian geometric quantum computation has been extensively studied, due to its fast manipulation and inherent noise resistance. However, to obtain the pure geometric phase, the quantum state is required to evolve along some special paths to eliminate the dynamical phase. This leads to increasing evolution time and weakened gate robustness. The unconventional geometric quantum computation is an effective way to solve the above problems. Here, we propose a general approach to realize the unconventional geometric computation. Then, we discuss the effect of the ratio of geometric phase to dynamic phase on the performance of quantum gates. The results show that the selection of ratio corresponds to different quantum gate robustness. Therefore, we can optimize the ratio to get higher-fidelity quantum gates. At last, we construct the ratio-optimized quantum gates in a superconducting circuit and test its robustness. The fidelities of the T-gate, Hadamard H-gate, and controlled phase gate can be obtained as 99.98%" role="presentation" style="position: relative;">99.98%99.98% 99.98 % , 99.95%" role="presentation" style="position: relative;">99.95%99.95% 99.95 % , and 99.85%" role="presentation" style="position: relative;">99.85%99.85% 99.85 % , respectively. Therefore, our scheme provides a promising way to realize large-scale fault-tolerant quantum computation in superconducting circuits.

 Artículos similares

       
 
Gennady Ryabov,Vladimir Serov     Pág. 28 - 32
The article is a continuation of the natural numbers structure research from the position of representation in the form of six infinite arithmetic progressions and addition and multiplication semi-group actions on this set. Such representation leads to t... ver más

 
Fabrizio Ferrari-Ruffino and Lorenzo Fortunato    
The program diagonalizes the Geometric Collective Model (Bohr Hamiltonian) with generalized Gneuss?Greiner potential with terms up to the sixth power in ?? ß . In nuclear physics, the Bohr?Mottelson model with later extensions into the rotovibrational Co... ver más
Revista: Computation

 
Jianmin Tao, Giovanni Vignale and Jian-Xin Zhu    
The foundation of many approximations in time-dependent density functional theory (TDDFT) lies in the theory of the homogeneous electron gas. However, unlike the ground-state DFT, in which the exchange-correlation potential of the homogeneous electron ga... ver más
Revista: Computation

 
Chen, H     Pág. 2059 - 2060