Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 22 (2023)  /  Artículo
ARTÍCULO
TITULO

Collaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems

Francisco J. Soltero    
Pablo Fernández-Blanco and J. Ignacio Hidalgo    

Resumen

Technical indicators use graphic representations of datasets by applying various mathematical formulas to financial time series of prices. These formulas comprise a set of rules and parameters whose values are not necessarily known and depend on many factors, such as the market in which they operate, the size of the time window, and so on. This paper focuses on the real-time optimization of the parameters applied for analyzing time series of data. In particular, we optimize the parameters of some technical financial indicators. We propose the combination of several Multiobjective Evolutionary Algorithms. Unlike other approaches, this paper applies a set of different Multiobjective Evolutionary Algorithms, collaborating to construct a global Pareto Set of solutions. Solutions for financial problems seek high returns with minimal risk. The optimization process is continuous and occurs at the same frequency as the investment time interval. This technique permits the application of the non-dominated solutions obtained with different MOEAs at the same time. Experimental results show that Collaborative Multiobjective Evolutionary Algorithms obtain up to 22% of profit and increase the returns of the commonly used Buy and Hold strategy and other multi-objective strategies, even for daily operations.

 Artículos similares

       
 
Krzysztof Drachal and Michal Pawlowski    
This study firstly applied a Bayesian symbolic regression (BSR) to the forecasting of numerous commodities? prices (spot-based ones). Moreover, some features and an initial specification of the parameters of the BSR were analysed. The conventional approa... ver más

 
Ionu? Nica, Camelia Delcea, Nora Chiri?a and ?tefan Ionescu    
This study describes a comprehensive bibliometric analysis of shadow banking and financial contagion dynamics from 1996 to 2022. Through a holistic approach, our study focuses on quantifying the impact and uncovering significant trends in scientific rese... ver más

 
Mattia Pellegrino, Gianfranco Lombardo, George Adosoglou, Stefano Cagnoni, Panos M. Pardalos and Agostino Poggi    
With the recent advances in machine learning (ML), several models have been successfully applied to financial and accounting data to predict the likelihood of companies? bankruptcy. However, time series have received little attention in the literature, w... ver más
Revista: Future Internet

 
Mehran Vahedi Nikbakht, Mohammad Gheibi, Hassan Montazeri, Reza Yeganeh Khaksar, Reza Moezzi and Amir Vadiee    
Construction projects, especially those for commercial purposes, require thorough planning and control to ensure success within predetermined budgets and timelines. This research, conducted in Mashhad, Iran, employs the analytic hierarchy process (AHP) a... ver más
Revista: Infrastructures

 
Adriano Mancini, Francesco Solfanelli, Luca Coviello, Francesco Maria Martini, Serena Mandolesi and Raffaele Zanoli    
Yield prediction is a crucial activity in scheduling agronomic operations and in informing the management and financial decisions of a wide range of stakeholders of the organic durum wheat supply chain. This research aims to develop a yield forecasting s... ver más
Revista: Agronomy