Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 21 (2020)  /  Artículo
ARTÍCULO
TITULO

Multi-Task Learning for Small Brain Tumor Segmentation from MRI

Duc-Ky Ngo    
Minh-Trieu Tran    
Soo-Hyung Kim    
Hyung-Jeong Yang and Guee-Sang Lee    

Resumen

Segmenting brain tumors accurately and reliably is an essential part of cancer diagnosis and treatment planning. Brain tumor segmentation of glioma patients is a challenging task because of the wide variety of tumor sizes, shapes, positions, scanning modalities, and scanner?s acquisition protocols. Many convolutional neural network (CNN) based methods have been proposed to solve the problem of brain tumor segmentation and achieved great success. However, most previous studies do not fully take into account multiscale tumors and often fail to segment small tumors, which may have a significant impact on finding early-stage cancers. This paper deals with the brain tumor segmentation of any sizes, but specially focuses on accurately identifying small tumors, thereby increasing the performance of the brain tumor segmentation of overall sizes. Instead of using heavyweight networks with multi-resolution or multiple kernel sizes, we propose a novel approach for better segmentation of small tumors by dilated convolution and multi-task learning. Dilated convolution is used for multiscale feature extraction, however it does not work well with very small tumor segmentation. For dealing with small-sized tumors, we try multi-task learning, where an auxiliary task of feature reconstruction is used to retain the features of small tumors. The experiment shows the effectiveness of segmenting small tumors with the proposed method. This paper contributes to the detection and segmentation of small tumors, which have seldom been considered before and the new development of hierarchical analysis using multi-task learning.

 Artículos similares

       
 
Jinya Xu, Jiaye Gong, Luyao Wang and Yunbo Li    
The stability of navigation in waves is crucial for ships, and the effect of the waves on navigation stability is complicated. Hence, the LSTM neural network technique is applied to predict the course changing of a ship in different wave conditions, wher... ver más

 
Wentao Lv, Fan Li, Shijie Luo and Jie Xiang    
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that can reduce quality of life and burden families. However, there is a lack of objectivity in clinical diagnosis, so it is very important to develop a method for early and accurate... ver más
Revista: Algorithms

 
Zeyuan Zhao, Ping Li, Yongjie Dai, Zhaoe Min and Lei Chen    
Alzheimer?s disease (AD) is an irreversible neurodegenerative disease. Providing trustworthy AD progression predictions for at-risk individuals contributes to early identification of AD patients and holds significant value in discovering effective treatm... ver más
Revista: Applied Sciences

 
Qi Meng, Xixiang Zhang, Yun Dong, Yan Chen and Dezhao Lin    
Relationship extraction is a crucial step in the construction of a knowledge graph. In this research, the grid field entity relationship extraction was performed via a labeling approach that used span representation. The subject entity and object entity ... ver más
Revista: Applied Sciences

 
Lihong Zhang, Chaolong Liu and Nan Jia    
Multimodal emotion classification (MEC) has been extensively studied in human?computer interaction, healthcare, and other domains. Previous MEC research has utilized identical multimodal annotations (IMAs) to train unimodal models, hindering the learning... ver más
Revista: Applied Sciences