Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Spatial Prediction of COVID-19 Pandemic Dynamics in the United States

Çigdem Ak    
Alex D. Chitsazan    
Mehmet Gönen    
Ruth Etzioni and Aaron J. Grossberg    

Resumen

The impact of COVID-19 across the United States (US) has been heterogeneous, with rapid spread and greater mortality in some areas compared with others. We used geographically-linked data to test the hypothesis that the risk for COVID-19 was defined by location and sought to define which demographic features were most closely associated with elevated COVID-19 spread and mortality. We leveraged geographically-restricted social, economic, political, and demographic information from US counties to develop a computational framework using structured Gaussian process to predict county-level case and death counts during the pandemic?s initial and nationwide phases. After identifying the most predictive information sources by location, we applied an unsupervised clustering algorithm and topic modeling to identify groups of features most closely associated with COVID-19 spread. Our model successfully predicted COVID-19 case counts of unseen locations after examining case counts and demographic information of neighboring locations, with overall Pearson?s correlation coefficient and the proportion of variance explained as 0.96 and 0.84 during the initial phase and 0.95 and 0.87 during the nationwide phase, respectively. Aside from population metrics, presidential vote margin was the most consistently selected spatial feature in our COVID-19 prediction models. Urbanicity and 2020 presidential vote margins were more predictive than other demographic features. Models trained using death counts showed similar performance metrics. Topic modeling showed that counties with similar socioeconomic and demographic features tended to group together, and some of these feature sets were associated with COVID-19 dynamics. Clustering of counties based on these feature groups found by topic modeling revealed groups of counties that experienced markedly different COVID-19 spread. We conclude that topic modeling can be used to group similar features and identify counties with similar features in epidemiologic research.

 Artículos similares

       
 
Haiqiang Yang and Zihan Li    
The objective imbalance between the taxi supply and demand exists in various areas of the city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing their profits and meeting the travel needs of residents. The ap... ver más

 
Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli    
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at var... ver más
Revista: Water

 
Xiaojun Zhu, Mingjian Qiu, Pengfei Zhang, Errui Ni, Jianxin Zhang, Li?ao Quan, Hui Liu and Xiaoyu Yang    
Revista: Water

 
Weiying Wang and Toshihiro Osaragi    
The generation and prediction of daily human mobility patterns have raised significant interest in many scientific disciplines. Using various data sources, previous studies have examined several deep learning frameworks, such as the RNN and GAN, to synth... ver más

 
Andrea Emma Pravitasari, Galuh Syahbana Indraprahasta, Ernan Rustiadi, Vely Brian Rosandi, Yuri Ardhya Stanny, Siti Wulandari, Rista Ardy Priatama and Alfin Murtadho    
This paper is situated within the discussion of mega-urbanization, a particular urbanization process that entails a large-scale agglomeration. In this paper, our focus is on urbanization in Java, Indonesia?s most dynamic region. We add to the literature ... ver más