Resumen
Cabbage is an annual vegetable crop species cultivated throughout the year. The development of high-yielding cabbage hybrids and the optimization of several agronomic management practices such as fertilization and crop rotation have resulted in increased soil fertility, crop yield and product quality. This study aimed to investigate the effects of the farming system (organic and conventional) and the applied rotation scheme on soil nutrient content, head yield and the nutrient content of cabbage. The preceding crops included either pea (P), faba bean (F) or cabbage (C), and thus, the rotation schemes were P-C, F-C and C-C. Sheep manure was applied in the organic farming system, and the inorganic fertilizer 11-15-15 (N-P2O5-K2O) was applied to the conventionally cultivated plants. The results reveal an interaction between the farming system and the preceding crop for the head yield, with the lowest values (57.00 t ha-1 and 53.87 t ha-1 in 2015/2016 and 2016/2017, respectively) recorded in plots where cabbage was cultivated as a preceding crop under the organic farming system. The N, P and K contents in head tissues were affected only by the farming system, with the greatest values recorded in the conventional farming system. Both factors affected the nutrient content in the soil. Specifically, the highest values of NO3- and total N content in the soil were recorded in the P-C and F-C rotations, and the K content was higher in the continuous cabbage cropping system (C-C). Moreover, the NO3-, P and K contents in the soils were higher in the conventional farming system compared to the organic system. To conclude, combining inorganic fertilization in a crop rotation scheme with legume species such as pea and faba bean as preceding crops for cabbage can result in increased soil fertility and head yield.