Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Sentiment Analysis of Chinese Product Reviews Based on Fusion of DUAL-Channel BiLSTM and Self-Attention

Ye Yuan    
Wang Wang    
Guangze Wen    
Zikun Zheng and Zhemin Zhuang    

Resumen

Product reviews provide crucial information for both consumers and businesses, offering insights needed before purchasing a product or service. However, existing sentiment analysis methods, especially for Chinese language, struggle to effectively capture contextual information due to the complex semantics, multiple sentiment polarities, and long-term dependencies between words. In this paper, we propose a sentiment classification method based on the BiLSTM algorithm to address these challenges in natural language processing. Self-Attention-CNN BiLSTM (SAC-BiLSTM) leverages dual channels to extract features from both character-level embeddings and word-level embeddings. It combines BiLSTM and Self-Attention mechanisms for feature extraction and weight allocation, aiming to overcome the limitations in mining contextual information. Experiments were conducted on the onlineshopping10cats dataset, which is a standard corpus of e-commerce shopping reviews available in the ChineseNlpCorpus 2018. The experimental results demonstrate the effectiveness of our proposed algorithm, with Recall, Precision, and F1 scores reaching 0.9409, 0.9369, and 0.9404, respectively.

 Artículos similares

       
 
Barbara Cardone, Ferdinando Di Martino and Vittorio Miraglia    
The application of sentiment analysis approaches to information flows extracted from the social networks connected to particular critical periods generated by pandemic, climatic and extreme environmental phenomena allow the decision maker to detect the e... ver más
Revista: Urban Science

 
Markus Frohmann, Manuel Karner, Said Khudoyan, Robert Wagner and Markus Schedl    
Recently, various methods to predict the future price of financial assets have emerged. One promising approach is to combine the historic price with sentiment scores derived via sentiment analysis techniques. In this article, we focus on predicting the f... ver más

 
Nirmalya Thakur    
Mining and analysis of the big data of Twitter conversations have been of significant interest to the scientific community in the fields of healthcare, epidemiology, big data, data science, computer science, and their related areas, as can be seen from s... ver más

 
Shuang Lu, Jianyun Huang and Jing Wu    
In the contexts of global climate change and the urbanization process, urban flooding poses significant challenges worldwide, necessitating effective rapid assessments to understand its impacts on various aspects of urban systems. This can be achieved th... ver más
Revista: Water

 
Alireza Alaei, Ying Wang, Vinh Bui and Bela Stantic    
Social media have been a valuable data source for studying people?s opinions, intentions, and behaviours. Such a data source incorporating advanced big data analysis methods, such as machine-operated emotion and sentiment analysis, will open unprecedente... ver más
Revista: Future Internet