Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 13 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Application to Ensemble Learning?The Simple, but Effective, Approach to Sentiment Classifying

Thien Khai Tran and Tuoi Thi Phan    

Resumen

Sentiment analysis is an active research area in natural language processing. The task aims at identifying, extracting, and classifying sentiments from user texts in post blogs, product reviews, or social networks. In this paper, the ensemble learning model of sentiment classification is presented, also known as CEM (classifier ensemble model). The model contains various data feature types, including language features, sentiment shifting, and statistical techniques. A deep learning model is adopted with word embedding representation to address explicit, implicit, and abstract sentiment factors in textual data. The experiments conducted based on different real datasets found that our sentiment classification system is better than traditional machine learning techniques, such as Support Vector Machines and other ensemble learning systems, as well as the deep learning model, Long Short-Term Memory network, which has shown state-of-the-art results for sentiment analysis in almost corpuses. Our model?s distinguishing point consists in its effective application to different languages and different domains.

 Artículos similares

       
 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences