Resumen
An experimental investigation of the vertical structure characteristics of internal solitary waves (ISWs) was systematically carried out in a large gravitationally stratified fluid flume. Four different stratifications were established, and basic elements of ISWs were measured by a conductivity probe array. The vertical distributions of the amplitude, characteristic frequency and waveform of two types of ISWs under different stratifications were obtained, and the experimental results were compared with the theoretical model. The study shows that most vertical structures of the amplitude under different stratifications agree with those of the theoretical model, while there are some deviations for ISWs with large amplitudes. Neither the two-layer model nor the continuously stratified model can effectively describe the variation in the characteristic frequency at different depths with amplitude. For a single small-amplitude ISW, the characteristic frequency first increases and then decreases with increasing depth. The characteristic frequency is largest at the depth of the maximum buoyancy frequency. For an ISW with a relatively large amplitude, there is likely to be a local minimum of the characteristic frequency near the depth where the maximum buoyancy frequency lies. In different stratifications, the sech2" role="presentation">sech2sech2
sech
2
function of KdV theory can describe the waveforms of ISWs at different depths well.