Resumen
Adjusting the filling pressure is essential to fit the final gas volume when charging a carbonated beverage with high pressure. However, in the previous mechanical carbonated ambient filling system, it was difficult to control and monitor the charging conditions such as pressure, temperature and flow rate. In this study, we have developed a high efficiency carbonated ambient filling system capable of high speed and high pressure filling, by using a pulse type electronic flow-meter. The response speed characteristics of the M(BC) and F(MH) series valves were investigated. LMS Imagine.Lab Amesim (Siemens PLM Software) was used to calculate the charging and discharging time of the system under a high CO2 gas pressure condition. The quantitative and precise charging system was implemented with the change of filling time and monitoring/controlling/correction of flow rate. Moreover, a dual controller of the high-speed pulse output was established and a high-speed data processing/flow rate charging algorithm was applied in the system. The filling variation of the system was in the range of ±3 gram(gr) (standard deviation 0.57). The developed system could be applied to improve the quality of goods and economic feasibility at various industrial sectors.