Resumen
We characterize the LoRa channel in terms of multi-path fading, loss burstiness, and assess the benefits of Forward Error Correction as well as the influence of frame length. We make these observations by synthesizing extensive experimental measurements realized with The Things Network in a medium size city. We then propose to optimize the LoRaWAN Adaptive Data Rate algorithm based on this refined LoRa channel characterization and taking into account the LoRaWAN inherent macro-diversity from multi-gateway reception. Firstly, we propose ??????opt
ADR
opt
, which adjusts Spreading Factor and frame repetition number to maintain the communication below a target Packet Error Rate ceiling with optimized Time-On-Air. Secondly, we propose ??????IFECC
ADR
IFECC
, an extension of ??????opt
ADR
opt
in case an Inter-Frame Erasure Correction Code is available. The resulting protocol provides very high reliability even over low quality channels, with comparable Time on Air and similar downlink usage as the currently deployed mechanism. Simulations corroborate the analysis, both over a synthetic random wireless link and over replayed real-world packet transmission traces.