Resumen
Physicochemical properties of chemicals as referred to in this review include, for example, thermodynamic properties such as heat of formation, boiling point, toxicity of molecules and the fate of molecules whenever undergoing or accelerating (catalytic) a chemical reaction and therewith about chemical equilibrium, that is, the equilibrium in chemical reactions. All such properties have been predicted in literature by a variety of methods. However, for the experimental scientist for whom such predictions are of relevance, the accuracies are often far from sufficient for reliable application We discuss current practices and suggest how one could arrive at better, that is sufficiently accurate and reliable, predictive methods. Some recently published examples have shown this to be possible in practical cases. In summary, this review focuses on methodologies to obtain the required accuracies for the chemical practitioner and process technologist designing chemical processes. Finally, something almost never explicitly mentioned is the fact that whereas for some practical cases very accurate predictions are required, for other cases a qualitatively correct picture with relatively low correlation coefficients can be sufficient as a valuable predictive tool. Requirements for acceptable predictive methods can therefore be significantly different depending on the actual application, which are illustrated using real-life examples, primarily with industrial relevance. Furthermore, for specific properties such as the octanol-water partition coefficient more close collaboration between research groups using different methods would greatly facilitate progress in the field of predictive modelling.