Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test

Yang Yang    
Ling Zhou    
Hongtao Zhou    
Wanning Lv    
Jian Wang    
Weidong Shi and Zhaoming He    

Resumen

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.

 Artículos similares

       
 
Wen Gao, Yanqiang Bi, Xiyuan Li, Apeng Dong, Jing Wang and Xiaoning Yang    
Hybrid airships, combining aerodynamic lift and buoyant lift, are efficient near-space aircraft for scientific exploration, observation, and surveillance. Compared to conventional airplanes and airships, hybrid airships offer unique advantages, including... ver más
Revista: Aerospace

 
Filippo Giorcelli, Sergej Antonello Sirigu, Giuseppe Giorgi, Nicolás Faedo, Mauro Bonfanti, Jacopo Ramello, Ermanno Giorcelli and Giuliana Mattiazzo    
Among the challenges generated by the global climate crisis, a significant concern is the constant increase in energy demand. This leads to the need to ensure that any novel energy systems are not only renewable but also reliable in their performance. A ... ver más

 
Domingo Pardo-Quiles, Ignacio Rodríguez-Rodríguez and José-Víctor Rodríguez    
The main goal of this research was to design and study the best structure, location, and shape of acoustic diffusers to be fitted on the ceilings of multipurpose auditoriums. Their absorbing properties can enhance the acoustics when installed on high cei... ver más
Revista: Acoustics

 
Yaneth Vasquez, Jair Franco, Mario Vasquez, Felipe Agudelo, Eleni Petala, Jan Filip, Jose Galvis and Oscar Herrera    
The tannery wastewater from the tanning stage (TWT) comprises organic and Cr pollutants, which can adversely affect aquatic life and have carcinogenic effects. In this study, we investigated the performance of a Fenton-like process using commercial Nano-... ver más
Revista: Water

 
Fatma Fakhfakh, Sahar Raissi, Karim Kriaa, Chemseddine Maatki, Lioua Kolsi and Bilel Hadrich    
The olive mill wastewater (OMW) treatment process is modeled and optimized through new design of experiments (DOE). The first step of the process is coagulation?flocculation using three coagulants (modeled with the mixture design) followed by photo-degra... ver más
Revista: Water