Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Drones  /  Vol: 7 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Model Predictive Control Technique for Ducted Fan Aerial Vehicles Using Physics-Informed Machine Learning

Tayyab Manzoor    
Hailong Pei    
Zhongqi Sun and Zihuan Cheng    

Resumen

This paper proposes a model predictive control (MPC) approach for ducted fan aerial robots using physics-informed machine learning (ML), where the task is to fully exploit the capabilities of the predictive control design with an accurate dynamic model by means of a hybrid modeling technique. For this purpose, an indigenously developed ducted fan miniature aerial vehicle with adequate flying capabilities is used. The physics-informed dynamical model is derived offline by considering the forces and moments acting on the platform. On the basis of the physics-informed model, a data-driven ML approach called adaptive sparse identification of nonlinear dynamics is utilized for model identification, estimation, and correction online. Thereafter, an MPC-based optimization problem is computed by updating the physics-informed states with the physics-informed ML model at each step, yielding an effective control performance. Closed-loop stability and recursive feasibility are ensured under sufficient conditions. Finally, a simulation study is conducted to concisely corroborate the efficacy of the presented framework.

 Artículos similares

       
 
Yan Chen and Chunchun Hu    
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time... ver más

 
Haiqiang Yang and Zihan Li    
The objective imbalance between the taxi supply and demand exists in various areas of the city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing their profits and meeting the travel needs of residents. The ap... ver más

 
Jingtao Sun, Jin Qi, Zhen Yan, Yadong Li, Jie Liang and Sensen Wu    
The COVID-19 pandemic has had a profound impact on people?s lives, making accurate prediction of epidemic trends a central focus in COVID-19 research. This study innovatively utilizes a spatiotemporal heterogeneity analysis (GTNNWR) model to predict COVI... ver más

 
Rui Wang and Yijing Li    
Given the paramount impacts of COVID-19 on people?s lives in the capital of the UK, London, it was foreseeable that the city?s crime patterns would have undergone significant transformations, especially during lockdown periods. This study aims to testify... ver más

 
Yonghai He, Songtao Lv, Nasi Xie, Huilin Meng, Wei Lei, Changyu Pu, Huabao Ma, Ziyang Wang, Guozhi Zheng and Xinghai Peng    
This study addressed the complex problems of selecting a constitutive model to objectively characterize asphalt mixtures and accurately determine their viscoelastic properties, which are influenced by numerous variables. Inaccuracies in model or paramete... ver más
Revista: Buildings