Resumen
The Yaoba Oasis is an irrigated cropland entirely dependent on groundwater; previous investigations (1980?2015) revealed an over-abstraction of groundwater and deteriorating groundwater quality. For further exploring the hydrodynamic behaviors and geochemical processes of groundwater during the irrigation season, groundwater samples were collected and analyzed using different techniques including classical statistics, correlation analysis, Piper diagrams, and Gibbs diagrams. The results indicated that Na+, K+, SO42- and Cl- were the main ions in groundwater, which were significantly correlated with TDS. The water?rock interaction is manifested by the precipitation of calcite and dolomite and the dissolution of rock salt and gypsum as an increase in TDS related to evaporation. In addition, the increasing complexity of hydrochemical type is caused by the rapid variation of hydrodynamic regime, irrigation and evaporation, which are subjected to the constraints of salty water intrusion from the desert salty lake and infiltration of irrigation return flow. Existing wells should limit overexploitation to halt the decline in groundwater levels and cut down irrigation water to reduce the risk of groundwater contamination and restore ecological balance in desert oasis.