Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Integration and Analysis of Multi-Modal Geospatial Secondary Data to Inform Management of at-Risk Archaeological Sites

Rebecca Guiney    
Elettra Santucci    
Samuel Valman    
Adam Booth    
Andrew Birley    
Ian Haynes    
Stuart Marsh and Jon Mills    

Resumen

Climate change poses an imminent physical risk to cultural heritage sites and their surrounding landscape through intensifying environmental processes such as damaging wetting and drying cycles that disrupt archaeological preservation conditions, and soil erosion which threatens to expose deposits and alter the archaeological context of sites. In the face of such threats, geospatial techniques such as GIS, remote sensing, and spatial modelling have proved invaluable tools for archaeological research and cultural heritage monitoring. This paper presents the application of secondary multi-source and multi-temporal geospatial data within a processing framework to provide a comprehensive assessment of geophysical risk to the Roman fort of Magna, Carvoran, UK. An investigation into the ancient hydraulic system at Magna was carried out with analysis of vegetation change over time, and spatio-temporal analysis of soil erosion risk at the site. Due to COVID-19 restrictions in place at the time of this study, these analyses were conducted using only secondary data with the aim to guide further archaeological research, and management and monitoring strategies for the stakeholders involved. Results guided inferences about the ancient hydraulic system, providing insights regarding how to better manage the site at Magna in the future. Analysis of soil erosion allowed the identification of hot spot areas, indicating a future increase in rates of erosion at Magna and suggesting a seasonal period of higher risk of degradation to the site. Results have proven that freely available multi-purpose national-scale datasets are sufficient to create meaningful insights into archaeological sites where physical access to the site is inhibited. This infers the potential to carry out preliminary risk assessment to inform future site management practices.

 Artículos similares

       
 
Saad Said Alqahtany and Toqeer Ali Syed    
In the domain of computer forensics, ensuring the integrity of operations like preservation, acquisition, analysis, and documentation is critical. Discrepancies in these processes can compromise evidence and lead to potential miscarriages of justice. To ... ver más
Revista: Information

 
Lilu Zhu, Yang Wang, Yunbo Kong, Yanfeng Hu and Kai Huang    
The integration of geospatial-analysis models is crucial for simulating complex geographic processes and phenomena. However, compared to non-geospatial models and traditional geospatial models, geospatial-analysis models face more challenges owing to ext... ver más

 
Salvatore Calcagno, Andrea Calvagna, Emiliano Tramontana and Gabriella Verga    
The Electronic Health Record (EHR) is a system for collecting and storing patient medical records as data that can be mechanically accessed, hence facilitating and assisting the medical decision-making process. EHRs exist in several formats, and each for... ver más
Revista: Future Internet

 
Paola Gasbarri, Daniele Accardo, Elisa Cacciaguerra, Silvia Meschini and Lavinia Chiara Tagliabue    
Despite the promising outcomes achieved over time in Asset Management, data accessibility, correlation, analysis, and visualization still represent challenges. The integration, readability, and interpretation of heterogeneous information by different sta... ver más

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms