Resumen
Knee osteoarthritis is a musculoskeletal defect specific to the soft tissues in the knee joint and is a degenerative disease that affects millions of people. Although drug intake can slow down progression, total knee arthroplasty has been the gold standard for the treatment of this disease. This surgical procedure involves replacing the tibiofemoral joint with an implant. The most common implants used for this require the removal of either the anterior cruciate ligament (ACL) alone or both cruciate ligaments which alters the native knee joint mechanics. Bi-cruciate-retaining implants have been developed but not frequently used due to the complexity of the procedure and the occurrences of intraoperative failures such as ACL and tibial eminence rupture. In this study, a knee joint implant was modified to have a bone graft that should aid in ACL reconstruction. The mechanical behavior of the bone graft was studied through finite element analysis (FEA). The results show that the peak Christensen safety factor for cortical bone is 0.021 while the maximum shear stress of the cancellous bone is 3 MPa which signifies that the cancellous bone could fail when subjected to the ACL loads, depending on the graft shear strength which could vary depending on the graft source, while cortical bone could withstand the walking load. It would be necessary to optimize the bone graft geometry for stress distribution as well as to evaluate the effectiveness of bone healing prior to implementation.