Resumen
Oriented feature from the accelerated segment test (oFAST) and rotated binary robust independent elementary features (rBRIEF) SLAM2 (ORB-SLAM2) represent a recognized complete visual simultaneous location and mapping (SLAM) framework with visual odometry as one of its core components. Given the accumulated error problem with RGB-Depth ORB-SLAM2 visual odometry, which causes a loss of camera tracking and trajectory drift, we created and implemented an improved visual odometry method to optimize the cumulative error. First, this paper proposes an adaptive threshold oFAST algorithm to extract feature points from images and rBRIEF is used to describe the feature points. Then, the fast library for approximate nearest neighbors strategy is used for image rough matching, the results of which are optimized by progressive sample consensus. The image matching precision is further improved by using an epipolar line constraint based on the essential matrix. Finally, the efficient Perspective-n-Point method is used to estimate the camera pose and a least-squares optimization problem is constructed to adjust the estimated value to obtain the final camera pose. The experimental results show that the proposed method has better robustness, higher image matching accuracy and more accurate determination of the camera motion trajectory.