Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production

Yang Zhang    
Xudong Zheng and Qian Xue    

Resumen

This paper proposes a machine-learning based reduced-order model that can provide fast and accurate prediction of the glottal flow during voice production. The model is based on the Bernoulli equation with a viscous loss term predicted by a deep neural network (DNN) model. The training data of the DNN model is a Navier-Stokes (N-S) equation-based three-dimensional simulation of glottal flows in various glottal shapes generated by a synthetic shape function, which can be obtained by superimposing the instantaneous modal displacements during vibration on the prephonatory geometry of the glottal shape. The input parameters of the DNN model are the geometric and flow parameters extracted from discretized cross sections of the glottal shapes and the output target is the corresponding flow resistance coefficient. With this trained DNN-Bernoulli model, the flow resistance coefficient as well as the flow rate and pressure distribution in any given glottal shape generated by the synthetic shape function can be predicted. The model is further coupled with a finite-element method based solid dynamics solver for simulating fluid-structure interactions (FSI). The prediction performance of the model for both static shape and FSI simulations is evaluated by comparing the solutions to those obtained by the Bernoulli and N-S model. The model shows a good prediction performance in accuracy and efficiency, suggesting a promise for future clinical use.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences

 
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu    
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti... ver más
Revista: Applied Sciences

 
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng    
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ... ver más
Revista: Applied Sciences

 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences