Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Riverbed Migrations in Western Taiwan under Climate Change

Yi-Chiung Chao    
Chi-Wen Chen    
Hsin-Chi Li and Yung-Ming Chen    

Resumen

In recent years, extreme weather phenomena have occurred worldwide, resulting in many catastrophic disasters. Under the impact of climate change, the frequency of extreme rainfall events in Taiwan will increase, according to a report on climate change in Taiwan. This study analyzed riverbed migrations, such as degradation and aggradation, caused by extreme rainfall events under climate change for the Choshui River, Taiwan. We used the CCHE1D model to simulate changes in flow discharge and riverbed caused by typhoon events for the base period (1979?2003) and the end of the 21st century (2075?2099) according to the climate change scenario of representative concentration pathways 8.5 (RCP8.5) and dynamical downscaling of rainfall data in Taiwan. According to the results on flow discharge, at the end of the 21st century, the average peak flow during extreme rainfall events will increase by 20% relative to the base period, but the time required to reach the peak will be 8 h shorter than that in the base period. In terms of the results of degradation and aggradation of the riverbed, at the end of the 21st century, the amount of aggradation will increase by 33% over that of the base period. In the future, upstream sediment will be blocked by the Chichi weir, increasing the severity of scouring downstream. In addition, due to the increased peak flow discharge in the future, the scouring of the pier may be more serious than it is currently. More detailed 2D or 3D hydrological models are necessary in future works, which could adequately address the erosive phenomena created by bridge piers. Our results indicate that not only will flood disasters occur within a shorter time duration, but the catchment will also face more severe degradation and aggradation in the future.

 Artículos similares

       
 
Hui Li, Yi-Kun Ba, Ning Zhang, Yong-Jian Liu and Wei Shi    
In regions with severe cold and high latitudes, concrete structures are susceptible to cracking and displacement due to uneven temperature stress, which directly impacts their normal utilization. Therefore, to investigate the temperature distribution cha... ver más
Revista: Applied Sciences

 
Ariadna Calcines Rosario, Frederic Auchère, Alain Jody Corso, Giulio Del Zanna, Jaroslav Dudík, Samuel Gissot, Laura A. Hayes, Graham S. Kerr, Christian Kintziger, Sarah A. Matthews, Sophie Musset, David Orozco Suárez, Vanessa Polito, Hamish A. S. Reid and Daniel F. Ryan    
Particle acceleration, and the thermalisation of energetic particles, are fundamental processes across the universe. Whilst the Sun is an excellent object to study this phenomenon, since it is the most energetic particle accelerator in the Solar System, ... ver más
Revista: Aerospace

 
Joachim Schulze, Simon Gehrmann, Avikal Somvanshi and Annette Rudolph-Cleff    
The summer of 2022 was one of the hottest and driest summers that Germany experienced in the 21st century. Water levels in rivers sank dramatically with many dams and reservoirs running dry; as a result, fields could not be irrigated sufficiently, and ev... ver más
Revista: Water

 
Rula Domínguez, Celia Olabarria and Elsa Vázquez    
Extreme climate events, such as heatwaves and torrential rain, affect the physiology and functioning of marine species, especially in estuarine habitats, producing severe ecological and socioeconomic impacts when the affected species support important fi... ver más

 
Liang Ding, Xian Yi, Zhanwei Hu and Xiangdong Guo    
Icing detection is the premise and basis for the operation of aircraft icing protection system, and is the primary issue in flight safety assurance. At present, there is a lack of research methods and design reference for the layout optimization of ice d... ver más
Revista: Aerospace