Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water  /  Vol: 10 Par: 6 (2018)  /  Artículo
ARTÍCULO
TITULO

On the Effect of Regular Waves on Inclined Negatively Buoyant Jets

Simone Ferrari    
Maria Grazia Badas and Giorgio Querzoli    

Resumen

The target of this paper is to measure the modifications that regular waves induce on the geometrical features and dilution of inclined negatively buoyant jets. In order to achieve this aim, we have carried out a set of experiments in a wavemaker-equipped flume, by measuring the concentration fields via light-induced fluorescence, a non-intrusive and full-field image analysis technique. The wave and jet parameters were selected in order to simulate the case of a typical discharge of brine, from a desalination plant, into the Mediterranean Sea, and compare it to a reference case, i.e., the same jet discharging into a stagnant water body. The mean concentration fields were obtained, as well as the geometrical features and dilution of the jets. The three main effects of waves on inclined negatively buoyant jets are the bifurcation (i.e., the separation in two branches), the rotation of the point of maximum height and the oscillation of the impact point around a fixed position different from the stationary one, and the reduction in size of the sea region interested by the discharge; this last effect increases with the wave period. As a consequence, under waves with high period and amplitude, the dilution of inclined negatively buoyant jets tends to decrease.