Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Deep Neural Network and Boosting Based Hybrid Quality Ranking for e-Commerce Product Search

Mourad Jbene    
Smail Tigani    
Rachid Saadane and Abdellah Chehri    

Resumen

In the age of information overload, customers are overwhelmed with the number of products available for sale. Search engines try to overcome this issue by filtering relevant items to the users? queries. Traditional search engines rely on the exact match of terms in the query and product meta-data. Recently, deep learning-based approaches grabbed more attention by outperforming traditional methods in many circumstances. In this work, we involve the power of embeddings to solve the challenging task of optimizing product search engines in e-commerce. This work proposes an e-commerce product search engine based on a similarity metric that works on top of query and product embeddings. Two pre-trained word embedding models were tested, the first representing a category of models that generate fixed embeddings and a second representing a newer category of models that generate context-aware embeddings. Furthermore, a re-ranking step was performed by incorporating a list of quality indicators that reflects the utility of the product to the customer as inputs to well-known ranking methods. To prove the reliability of the approach, the Amazon reviews dataset was used for experimentation. The results demonstrated the effectiveness of context-aware embeddings in retrieving relevant products and the quality indicators in ranking high-quality products.

 Artículos similares

       
 
Chinyang Henry Tseng, Woei-Jiunn Tsaur and Yueh-Mao Shen    
In detecting large-scale attacks, deep neural networks (DNNs) are an effective approach based on high-quality training data samples. Feature selection and feature extraction are the primary approaches for data quality enhancement for high-accuracy intrus... ver más
Revista: Future Internet

 
Hua Huang, Zhenfeng Peng, Jinkun Hou, Xudong Zheng, Yuxi Ding and Han Wu    
Disc buckle steel pipe brackets are widely used in building construction due to the advantages of its simple structure, large-bearing capacity, rapid assembling and disassembling, and strong versatility. In complex construction projects, the uncertaintie... ver más
Revista: Buildings

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann and Markus Quirmbach    
This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 9... ver más
Revista: Hydrology

 
Jun Li, Chenyang Zhang, Jianyi Zhang and Yanhua Shao    
To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obsc... ver más
Revista: Future Internet