Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 6 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Convolutional Neural Networks Based Analysis of Cephalometric Radiographs for Differential Diagnosis of Orthognathic Surgery Indications

Ki-Sun Lee    
Jae-Jun Ryu    
Hyon Seok Jang    
Dong-Yul Lee and Seok-Ki Jung    

Resumen

The aim of this study was to evaluate the deep convolutional neural networks (DCNNs) based on analysis of cephalometric radiographs for the differential diagnosis of the indications of orthognathic surgery. Among the DCNNs, Modified-Alexnet, MobileNet, and Resnet50 were used, and the accuracy of the models was evaluated by performing 4-fold cross validation. Additionally, gradient-weighted class activation mapping (Grad-CAM) was used to perform visualized interpretation to determine which region affected the DCNNs? class classification. The prediction accuracy of the models was 96.4% for Modified-Alexnet, 95.4% for MobileNet, and 95.6% for Resnet50. According to the Grad-CAM analysis, the most influential regions for the DCNNs? class classification were the maxillary and mandibular teeth, mandible, and mandibular symphysis. This study suggests that DCNNs-based analysis of cephalometric radiograph images can be successfully applied for differential diagnosis of the indications of orthognathic surgery.

 Artículos similares

       
 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin    
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual... ver más
Revista: AI

 
Moiz Hassan, Kandasamy Illanko and Xavier N. Fernando    
Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision where the goal is to create high-resolution images from low-resolution ones using innovative techniques. SSIR has numerous applications in fields such as medical/sate... ver más
Revista: AI

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Myung-Kyo Seo and Won-Young Yun    
The steel industry is typical process manufacturing, and the quality and cost of the products can be improved by efficient operation of equipment. This paper proposes an efficient diagnosis and monitoring method for the gearbox, which is a key piece of m... ver más
Revista: Applied Sciences