Resumen
The lack of strategic planning in stormwater management has made rapidly urbanizing cities more vulnerable to urban water issues than in the past. Low infiltration rates, increase in peak river discharge, and recurrence of urban floods and waterlogging are clear signs of unplanned rapid urbanization. As with many other low to middle-income countries, India depends on its conventional and centralized stormwater drains for managing stormwater runoff. However, in the absence of a robust stormwater management policy governed by the state, its impact trickles down to a municipal level and the negative outcome can be clearly observed through a failure of the drainage systems. This study examines the role of onsite and decentralized stormwater infiltration facilities, as successfully adopted by some higher income countries, under physical and social variability in the context of the metropolitan city of Lucknow, India. Considering the 2030 Master Plan of Lucknow city, this study investigated the physical viability of the infiltration facilities. Gridded ModClark rainfall-runoff modeling was carried out in Kukrail river basin, an important drainage basin of Lucknow city. The HEC-HMS model, inside the watershed modeling system (WMS), was used to simulate stormwater runoff for multiple scenarios of land use and rainfall intensities. With onsite infiltration facilities as part of land use measures, the peak discharge reduced in the range of 48% to 59%. Correlation analysis and multiple regression were applied to understand the rainfall-runoff relationship. Furthermore, the stormwater runoff drastically reduced with decentralized infiltration systems.