Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 21 (2019)  /  Artículo
ARTÍCULO
TITULO

Use of Neural Networks to Identify Safety Prevention Priorities in Agro-Manufacturing Operations within Commercial Grain Elevators

Fatemeh Davoudi Kakhki    
Steven A. Freeman and Gretchen A. Mosher    

Resumen

The grain handling industry plays a significant role in U.S. agriculture by storing, distributing, and processing a variety of agricultural commodities. Commercial grain elevators are hazardous agro-manufacturing work environments where workers are prone to severe injuries, due to the nature of the activities and workplace. Safety incidents in agro-manufacturing operations generally arise from a combination of factors, rather than a single cause, therefore, research on occupational incidents must look deeper into identifying the underlying causes, through the application of advanced analyses methods. In occupational safety, it is possible to estimate and predict probability of safety risks through developing artificial neural network predictive models. Due to the significance of safety risk assessment in the design and prioritization of effective prevention measures, this study aimed at classifying and predicting causes of occupational incidents in grain elevator agro-manufacturing operations in the Midwest region of the United States. Workers? compensation claims data, from 2008 to 2016, were utilized for training multilayer perceptron (MLP) and radial basis function (RBF) neural networks. Both MLP and RBF models could predict the probability of safety risks with a high overall accuracy of 60%, 61%. Based on values of AUC (area under the curve) from the ROC (receiving operating charts), both models predicted the probability of individual safety risks with a high accuracy rate of between 71.5% and 99.2%. In addition, sensitivity analysis showed that nature of injury is the most significant determinant of safety risks probability, along with type of injury. The novelty of this study is the use of the artificial neural network methodology to analyze multi-level causes of occupational incidents as the sources of safety risks in bulk storage facilities. The results confirm that artificial neural networks are useful in safety risk estimation, and identifying the incidents? risk factors. The implementation of safety measures in grain elevators can help in preventing occupational injuries, saving lives, and reducing the occurrence and severity of such incidents in industrial work environments.

 Artículos similares

       
 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Gerasim V. Krivovichev and Valentina Yu. Sergeeva    
The paper is devoted to the theoretical and numerical analysis of the two-step method, constructed as a modification of Polyak?s heavy ball method with the inclusion of an additional momentum parameter. For the quadratic case, the convergence conditions ... ver más
Revista: Algorithms

 
Yu-Hung Chang, Chien-Hung Liu and Shingchern D. You    
The dynamic flexible job-shop problem (DFJSP) is a realistic and challenging problem that many production plants face. As the product line becomes more complex, the machines may suddenly break down or resume service, so we need a dynamic scheduling frame... ver más
Revista: Information

 
Nirmal Acharya, Padmaja Kar, Mustafa Ally and Jeffrey Soar    
Significant clinical overlap exists between mental health and substance use disorders, especially among women. The purpose of this research is to leverage an AutoML (Automated Machine Learning) interface to predict and distinguish co-occurring mental hea... ver más
Revista: Applied Sciences

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace