Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  IoT  /  Vol: 4 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Convolutional Neural Network-Based Low-Powered Wearable Smart Device for Gait Abnormality Detection

Sanjeev Shakya    
Attaphongse Taparugssanagorn and Chaklam Silpasuwanchai    

Resumen

Gait analysis is a powerful technique that detects and identifies foot disorders and walking irregularities, including pronation, supination, and unstable foot movements. Early detection can help prevent injuries, correct walking posture, and avoid the need for surgery or cortisone injections. Traditional gait analysis methods are expensive and only available in laboratory settings, but new wearable technologies such as AI and IoT-based devices, smart shoes, and insoles have the potential to make gait analysis more accessible, especially for people who cannot easily access specialized facilities. This research proposes a novel approach using IoT, edge computing, and tiny machine learning (TinyML) to predict gait patterns using a microcontroller-based device worn on a shoe. The device uses an inertial measurement unit (IMU) sensor and a TinyML model on an advanced RISC machines (ARM) chip to classify and predict abnormal gait patterns, providing a more accessible, cost-effective, and portable way to conduct gait analysis.

Palabras claves

 Artículos similares

       
 
Arturs Kempelis, Inese Polaka, Andrejs Romanovs and Antons Patlins    
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor m... ver más
Revista: Future Internet

 
Omar Serghini, Hayat Semlali, Asmaa Maali, Abdelilah Ghammaz and Salvatore Serrano    
Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning tec... ver más
Revista: Future Internet

 
Joaquim Miguel, Pedro Mendonça, Agnelo Quelhas, João M. L. P. Caldeira and Vasco N. G. J. Soares    
Hiking and cycling have become popular activities for promoting well-being and physical activity. Portugal has been investing in hiking and cycling trail infrastructures to boost sustainable tourism. However, the lack of reliable data on the use of these... ver más
Revista: Future Internet

 
Jui-Fa Chen, Yu-Ting Liao and Po-Chun Wang    
Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable fluctuations in river water levels. This environment necessitates the development of real-time, automated systems for water level detection. Due to degradation, tra... ver más
Revista: Water

 
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang     Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so... ver más