Resumen
Countries around the world generate electricity from renewable resources to decarbonise their societies and reduce global warming. Some countries have already outlined their wishes to produce a part of their total energy consumption from renewable sources in the coming years and gradually reduce the use of nuclear energy and fossil fuel in favour of cleaner fuels. While renewable energies are significant factors in tackling climate change, the parameters that can influence their performance should be analysed in detail during the design process. One of these parameters is the foundation of an offshore wind turbine. Offshore wind turbines allow more energy to be produced than an onshore installation, and do not have any harmful effects on human beings, while their geotechnical aspects need to be clearly determined in advance. In this study, the influential parameters such as soil type, the number of bolts in the design, and the size of the structure were analysed using the finite element method for three different designs. The simulations showed that some soil properties, such as cohesion, do not influence the results, while Young?s modulus has a large influence on the designs. Additionally, the results of this study showed that the maximum stress concentrations are at the bolts and connection joints where they are too close to the steel?s yield stress. It also proves that the non-elastic behaviour of the soil does not require to be assigned for such analyses and it can be simplified only with its elastic behaviour. The embedded length affects the lateral displacement, while the number of bolts influences the structure?s resistance to external loads.