Resumen
Ships are among the most complex systems in the world. The always increasing interest in environmental aspects, the evolution of technologies and the introduction of new rule constraints in the maritime field have compelled the innovation of the ship design approach. At an early design stage, there is the need to compare different design solutions, also in terms of environmental performance, building and operative costs over the whole ship life cycle. In this context, the Life Cycle Performance Assessment (LCPA) tool allows an integrated design approach merging the evaluation of both costs and environmental performances on a comparative basis, among different design solutions. Starting from the first tool release, this work aims to focus on the maintenance of the propulsion system, developing a flexible calculation method for maintenance costs prediction, based on the ship operational profiles and the selected technical solution. After the improvement, the whole LCPA tool has been applied on a research vessel to evaluate, among different propulsion layout solutions, the one with the more advantageous performance in terms of costs during the whole vessel operating life. The identification of the best design solution is strictly dependent on the selection criterion and the point of view of the interested parties using the LCPA tool, e.g., the shipbuilder or the ship-owner.