Resumen
Increased installation of renewable electricity generators requires different technologies to compensate for the associated fast and high load gradients. In this work, sorption enhanced gasification (SEG) in a dual fluidized bed gasification system is considered as a promising and flexible technology for the tailored syngas production for use in chemical manufacturing or electricity generation. To study different operational strategies, as defined by gasification temperature or fuel input, a simulation model is developed. This model considers the hydrodynamics in a bubbling fluidized bed gasifier and the kinetics of gasification reactions and CO2 capture. The CO2 capture rate is defined by the number of carbonation/calcination cycles and the make-up of fresh limestone. A parametric study of the make-up flow rate (0.2, 6.6, and 15 kg/h) reveals its strong influence on the syngas composition, especially at low gasification temperatures (600?650 °C). Our results show good agreement with the experimental data of a 200 kW pilot plant, as demonstrated by deviations of syngas composition (5?34%), lower heating value (LHV) (5?7%), and M module (23?32%). Studying the fuel feeding rate (22?40 kg/h), an operational range with a good mixing of solids in the fluidized bed is identified. The achieved results are summarized in a reactor performance diagram, which gives the syngas power depending on the gasification temperature and the fuel feeding rate.