Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Agriculture  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Object Detection Algorithm for Lingwu Long Jujubes Based on the Improved SSD

Yutan Wang    
Zhenwei Xing    
Liefei Ma    
Aili Qu and Junrui Xue    

Resumen

The detection of Lingwu long jujubes in a natural environment is of great significance for robotic picking. Therefore, a lightweight network of target detection based on the SSD (single shot multi-box detector) is presented to meet the requirements of a low computational complexity and enhanced precision. Traditional object detection methods need to load pre-trained weights, cannot change the network structure, and are limited by equipment resource conditions. This study proposes a lightweight SSD object detection method that can achieve a high detection accuracy without loading pre-trained weights and replace the Peleenet network with VGG16 as the trunk, which can acquire additional inputs from all of the previous layers and provide itself characteristic maps to all of the following layers. The coordinate attention module and global attention mechanism are added in the dense block, which boost models to more accurately locate and identify objects of interest. The Inceptionv2 module has been replaced in the first three additional layers of the SSD structure, so the multi-scale structure can enhance the capacity of the model to retrieve the characteristic messages. The output of each additional level is appended to the export of the sub-level through convolution and pooling operations in order to realize the integration of the image feature messages between the various levels. A dataset containing images of the Lingwu long jujubes was generated and augmented using pre-processing techniques such as noise reinforcement, light variation, and image spinning. To compare the performance of the modified SSD model to the original model, a number of experiments were conducted. The results indicate that the mAP (mean average precision) of the modified SSD algorithm for object inspection is 97.32%, the speed of detection is 41.15 fps, and the parameters are compressed to 30.37% of the original networks for the same Lingwu long jujubes datasets without loading pre-trained weights. The improved SSD target detection algorithm realizes a reduction in complexity, which is available for the lightweight adoption to a mobile platform and it provides references for the visual detection of robotic picking.

 Artículos similares

       
 
Jerry Gao, Charanjit Kaur Bambrah, Nidhi Parihar, Sharvaree Kshirsagar, Sruthi Mallarapu, Hailong Yu, Jane Wu and Yunyun Yang    
With the development of artificial intelligence, the intelligence of agriculture has become a trend. Intelligent monitoring of agricultural activities is an important part of it. However, due to difficulties in achieving a balance between quality and cos... ver más
Revista: Agriculture

 
Yishen Lin, Zifan Huang, Yun Liang, Yunfan Liu and Weipeng Jiang    
Citrus fruits hold pivotal positions within the agricultural sector. Accurate yield estimation for citrus fruits is crucial in orchard management, especially when facing challenges of fruit occlusion due to dense foliage or overlapping fruits. This study... ver más
Revista: Agriculture

 
Lexin Zhang, Kuiheng Chen, Liping Zheng, Xuwei Liao, Feiyu Lu, Yilun Li, Yuzhuo Cui, Yaze Wu, Yihong Song and Shuo Yan    
This study introduces a novel high-accuracy fruit fly detection model based on the Transformer structure, specifically aimed at addressing the unique challenges in fruit fly detection such as identification of small targets and accurate localization agai... ver más
Revista: Agriculture

 
Junsheng Liu, Guangze Zhao, Shuangxi Liu, Yi Liu, Huawei Yang, Jingwei Sun, Yinfa Yan, Guoqiang Fan, Jinxing Wang and Hongjian Zhang    
In the realm of automated apple picking operations, the real-time monitoring of apple maturity and diameter characteristics is of paramount importance. Given the constraints associated with feature detection of apples in automated harvesting, this study ... ver más
Revista: Agronomy

 
Vasileios Moysiadis, Ilias Siniosoglou, Georgios Kokkonis, Vasileios Argyriou, Thomas Lagkas, Sotirios K. Goudos and Panagiotis Sarigiannidis    
Remote sensing stands out as one of the most widely used operations in the field. In this research area, UAVs offer full coverage of large cultivation areas in a few minutes and provide orthomosaic images with valuable information based on multispectral ... ver más
Revista: Agriculture