Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 10 (2019)  /  Artículo
ARTÍCULO
TITULO

Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape Models

Kun Zhang    
Shiquan Qiao    
Xiaohong Wang    
Yongtao Yang and Yongqiang Zhang    

Resumen

With the development of 3D scanning technology, a huge volume of point cloud data has been collected at a lower cost. The huge data set is the main burden during the data processing of point clouds, so point cloud simplification is critical. The main aim of point cloud simplification is to reduce data volume while preserving the data features. Therefore, this paper provides a new method for point cloud simplification, named FPPS (feature-preserved point cloud simplification). In FPPS, point cloud simplification entropy is defined, which quantifies features hidden in point clouds. According to simplification entropy, the key points including the majority of the geometric features are selected. Then, based on the natural quadric shape, we introduce a point cloud matching model (PCMM), by which the simplification rules are set. Additionally, the similarity between PCMM and the neighbors of the key points is measured by the shape operator. This represents the criteria for the adaptive simplification parameters in FPPS. Finally, the experiment verifies the feasibility of FPPS and compares FPPS with other four-point cloud simplification algorithms. The results show that FPPS is superior to other simplification algorithms. In addition, FPPS can partially recognize noise.

 Artículos similares

       
 
Abderrazzaq Kharroubi, Zouhair Ballouch, Rafika Hajji, Anass Yarroudh and Roland Billen    
Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations o... ver más
Revista: Infrastructures

 
Wensi Li, Yu Zhang, Ruizhi Li, Lijun Zhang, Xingwang Zhang, Hongyin Li, Peng Nie and Shengdong Zhang    
Currently, over 100 nuclear power units globally have been in operation for more than 40 years. Hindered by the limitations of computer technology at the time, these nuclear facilities lack detailed electronic drawings. Activities such as equipment repla... ver más
Revista: Applied Sciences

 
Zongshun Wang, Ce Li, Jialin Ma, Zhiqiang Feng and Limei Xiao    
In this study, we introduce a novel framework for the semantic segmentation of point clouds in autonomous driving scenarios, termed PVI-Net. This framework uniquely integrates three different data perspectives?point clouds, voxels, and distance maps?exec... ver más
Revista: Information

 
Swati Kumari, Vatsal Tulshyan and Hitesh Tewari    
Due to rising cyber threats, IoT devices? security vulnerabilities are expanding. However, these devices cannot run complicated security algorithms locally due to hardware restrictions. Data must be transferred to cloud nodes for processing, giving attac... ver más
Revista: Information

 
Anqing Wang, Longwei Li, Haoliang Wang, Bing Han and Zhouhua Peng    
In this paper, a swarm trajectory-planning method is proposed for multiple autonomous surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the point cloud information of the surrounding environment obtained from loc... ver más