Resumen
The present paper considers the problem of choosing among a collection of competing electricity price forecasting models to address a stochastic decision-making problem. We propose an event-based evaluation framework applicable to any optimization problem, where uncertainty is captured through ensembles. The task of forecast evaluation is simplified from assessing a multivariate distribution over prices to assessing a univariate distribution over a binary outcome directly linked to the underlying decision-making problem. The applicability of our framework is demonstrated for two exemplary profit-maximization problems of a risk-neutral energy trader, (i) the optimal operation of a pumped-hydro storage plant and (ii) the optimal trading of subsidized renewable energy in Germany. We compare and contrast the approach with the full probabilistic and profit?loss-based evaluation frameworks. It is concluded that the event-based evaluation framework more reliably identifies economically equivalent forecasting models, and in addition, the results suggest that an event-based evaluation specifically tailored to the rare event is crucial for decision-making problems linked to rare events.