Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 17 (2023)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning-Based Approach for Extraction of Positioning Feature Points in Lifting Holes

Jiahui Qian    
Wenjun Xia    
Zhangyan Zhao and Faju Qiu    

Resumen

Due to uncontrollable influences of the manufacturing process and different construction environments, there are significant challenges to extracting accurate positioning points for the lifting holes in prefabricated beams. In this study, we propose a two-stage feature detection, which comprises the ADD (multi-Attention DASPP DeeplabV3+) model and the VLFGM (Voting mechanism line fitting based on Gaussian mixture model) method. Initially, the YoloV5s model is employed for image coarse localization to reduce the impacts of background noise, and the ADD model follows to segment the target region. Then, the multi-step ECA mechanism is introduced to the ADD. It can mitigate the loss of interest features in the pooling layer of the backbone as well as retain the details of the original features; DASPP is adopted to fuse features at different scales to enhance the correlation of features among channels. Finally, VLFGM is utilized to reduce the dependency of accuracy on segmentation results. The experimental results demonstrate that the proposed model achieves a mean intersection over union (mIoU) of 95.07%, with a 3.48% improvement and a mean pixel accuracy (mPA) of 99.16% on the validation set. The improved method reduces vertexes error by 30.00% (to 5.39 pixels) and centroid error by 28.93% (to 1.72 pixels), which exhibits superior stability and accuracy. This paper provides a reliable solution for visual positioning of prefabricated beams in complex environments.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms