Resumen
This paper realizes the simultaneous optimization of a vessel?s course and speed for a whole voyage within the estimated time of arrival (ETA), which can ensure the voyage is safe and energy-saving through proper planning of the route and speed. Firstly, a dynamic sea area model with meteorological and oceanographic data sets is established to delineate the navigable and prohibited areas; secondly, some data are extracted from the records of previous voyages, to train two artificial neural network models to predict fuel consumption rate and revolutions per minute (RPM), which are the keys to route optimization. After that, speed configuration is introduced to the optimization process, and a simultaneous optimization model for the ship?s course and speed is proposed. Then, based on a customized version of the A* algorithm, the optimization is solved in simulation. Two simulations of a ship crossing the North Pacific show that the proposed methods can make navigation decisions in advance that ensure the voyage?s safety, and compared with a naive route, the optimized navigation program can reduce fuel consumption while retaining an approximately constant time to destination and adapting to variations in oceanic conditions.