Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

Towards a Method to Enable the Selection of Physical Models within the Systems Engineering Process: A Case Study with Simulink Models

Eduardo Cibrián    
Jose María Álvarez-Rodríguez    
Roy Mendieta and Juan Llorens    

Resumen

The use of different techniques and tools is a common practice to cover all stages in the development life-cycle of systems generating a significant number of work products. These artefacts are frequently encoded using diverse formats, and often require access through non-standard protocols and formats. In this context, Model-Based Systems Engineering (MBSE) emerges as a methodology to shift the paradigm of Systems Engineering practice from a document-oriented environment to a model-intensive environment. To achieve this major goal, a formalised application of modelling is employed throughout the life-cycle of systems to generate various system artefacts represented as models, such as requirements, logical models, and multi-physics models. However, the mere use of models does not guarantee one of the main challenges in the Systems Engineering discipline, namely, the reuse of system artefacts. Considering the fact that models are becoming the main type of system artefact, it is necessary to provide the capability to properly and efficiently represent and retrieve the generated models. In light of this, traditional information retrieval techniques have been widely studied to match existing software assets according to a set of capabilities or restrictions. However, there is much more at stake than the simple retrieval of models or even any piece of knowledge. An environment for model reuse must provide the proper mechanisms to (1) represent any piece of data, information, or knowledge under a common and shared data model, and (2) provide advanced retrieval mechanisms to elevate the meaning of information resources from text-based descriptions to concept-based ones. This need has led to novel methods using word embeddings and vector-based representations to semantically encode information. Such methods are applied to encode the information of physical models while preserving their underlying semantics. In this study, a text corpus from MATLAB Simulink models was preprocessed using Natural Language Processing (NLP) techniques and trained to generate word vector representations. Then, the presented method was validated using a testbed of MATLAB Simulink physical models in which verbalisations of models are transformed into vectors. The effectiveness of the proposed solution was assessed through a use case study. Evaluation of the results demonstrates a precision value of 0.925, a recall value of 0.865, and an F1 score of 0.884.

 Artículos similares

       
 
Abdullahi T. Sulaiman, Habeeb Bello-Salau, Adeiza J. Onumanyi, Muhammed B. Mu?azu, Emmanuel A. Adedokun, Ahmed T. Salawudeen and Abdulfatai D. Adekale    
The particle swarm optimization (PSO) algorithm is widely used for optimization purposes across various domains, such as in precision agriculture, vehicular ad hoc networks, path planning, and for the assessment of mathematical test functions towards ben... ver más
Revista: Algorithms

 
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen and Timo Ojala    
Diagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive dataset... ver más
Revista: Algorithms

 
Luis Adán Félix-Salazar, Emigdio Marín-Enríquez, Eugenio Alberto Aragón-Noriega and Jorge Saul Ramirez-Perez    
During the last 50 years, the increase in the efforts of the longline fleet in the Eastern Pacific Ocean (EPO) resulted in an increase in the capture of the swordfish Xiphias gladius. We analyzed a historical database of swordfish catches (1980?2020) rep... ver más

 
Baoyu Fan, Han Ma, Yue Liu and Xiaochen Yuan    
With the growth of data in the real world, datasets often encounter the problem of long-tailed distribution of class sample sizes. In long-tailed image recognition, existing solutions usually adopt a class rebalancing strategy, such as reweighting based ... ver más
Revista: Applied Sciences

 
Hassen Louati, Ali Louati, Rahma Lahyani, Elham Kariri and Abdullah Albanyan    
Responding to the critical health crisis triggered by respiratory illnesses, notably COVID-19, this study introduces an innovative and resource-conscious methodology for analyzing chest X-ray images. We unveil a cutting-edge technique that marries neural... ver más
Revista: Information