Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Wave and Hydrodynamic Processes in the Vicinity of a Rubble-Mound, Permeable, Zero-Freeboard Breakwater

Theofano I. Koutrouveli and Athanassios A. Dimas    

Resumen

A numerical study for the effect of crest width, breaking parameter, and trunk permeability on hydrodynamics and flow behavior in the vicinity of rubble-mound, permeable, zero-freeboard breakwaters (ZFBs) is presented. The modified two-dimensional Navier-Stokes equations for two-phase flows in porous media with a Smagorinsky model for the subgrid scale stresses were solved numerically. An immersed-boundary/level-set method was used. The numerical model was validated for the cases of wave propagation over a submerged impermeable trapezoidal bar and a low-crested permeable breakwater. Five cases of breakwaters were examined, and the main results are: (a) The size of the crest width, B, does not notably affect the wave reflection, vorticity, and currents in the seaward region of ZFBs, while wave transmission, currents in the leeward side, and mean overtopping discharge all decrease with increasing B. A non-monotonic behavior of the wave setup is also observed. (b) As the breaking parameter decreases, wave reflection, transmission, currents, mean overtopping discharge, and wave setup decrease. This observation is also verified by relevant empirical formulas. (c) As the ZFB trunk permeability decreases, an increase of the wave reflection, currents, wave setup, and a decrease of wave transmission and mean overtopping discharge is observed.

 Artículos similares

       
 
Le Duc Quyen, Young-Gyu Park, In-cheol Lee and Jun Myoung Choi    
Microplastics, ubiquitous in our environment, are significantly impacted by the hydrodynamic conditions around them. This study utilizes CFD to explore how various breaker types influence the dispersion and accumulation of microplastics in nearshore area... ver más

 
Weiqin Liu, Qilu Zou, Yaqiang Zhang, Yong Nie and Xuemin Song    
Large waves cause a great number of collapsed-ship accidents, resulting in the loss of many lives and properties. It has been found that most of these collapses are caused by encountering oblique waves. As a result, the ship structure experiences a compl... ver más

 
Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon    
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations we... ver más

 
Zereng Chen, Qinghe Zhang, Guoquan Ran and Yang Nie    
A wetting and drying treatment for a three-dimensional discontinuous Galerkin hydrodynamic model without mode splitting (external and internal modes) was developed. In this approach, computing elements are classified into wet, dry, and semidry elements, ... ver más

 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water