Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Utilizing Geospatial Data for Assessing Energy Security: Mapping Small Solar Home Systems Using Unmanned Aerial Vehicles and Deep Learning

Simiao Ren    
Jordan Malof    
Rob Fetter    
Robert Beach    
Jay Rineer and Kyle Bradbury    

Resumen

Solar home systems (SHS), a cost-effective solution for rural communities far from the grid in developing countries, are small solar panels and associated equipment that provides power to a single household. A crucial resource for targeting further investment of public and private resources, as well as tracking the progress of universal electrification goals, is shared access to high-quality data on individual SHS installations including information such as location and power capacity. Though recent studies utilizing satellite imagery and machine learning to detect solar panels have emerged, they struggle to accurately locate many SHS due to limited image resolution (some small solar panels only occupy several pixels in satellite imagery). In this work, we explore the viability and cost-performance tradeoff of using automatic SHS detection on unmanned aerial vehicle (UAV) imagery as an alternative to satellite imagery. More specifically, we explore three questions: (i) what is the detection performance of SHS using drone imagery; (ii) how expensive is the drone data collection, compared to satellite imagery; and (iii) how well does drone-based SHS detection perform in real-world scenarios? To examine these questions, we collect and publicly-release a dataset of high-resolution drone imagery encompassing SHS imaged under a variety of real-world conditions and use this dataset and a dataset of imagery from Rwanda to evaluate the capabilities of deep learning models to recognize SHS, including those that are too small to be reliably recognized in satellite imagery. The results suggest that UAV imagery may be a viable alternative to identify very small SHS from perspectives of both detection accuracy and financial costs of data collection. UAV-based data collection may be a practical option for supporting electricity access planning strategies for achieving sustainable development goals and for monitoring the progress towards those goals.

 Artículos similares

       
 
Salwa Rizqina Putri, Arie Wahyu Wijayanto and Anjar Dimara Sakti    
Poverty data are usually collected through on-the-ground household-based socioeconomic surveys. Unfortunately, data collection with such conventional methods is expensive, laborious, and time-consuming. Additional information that can describe poverty wi... ver más

 
Sevim Sezi Karayazi, Gamze Dane and Bauke de Vries    
Touristic cities are home to historical landmarks and irreplaceable urban heritages. Although tourism brings financial advantages, mass tourism creates pressure on historical cities. Therefore, ?attractiveness? is one of the key elements to explain touri... ver más

 
Radek Barvir, Alena Vondrakova and Jan Brus    
Despite the growing efficiency of the map-design process in general, tactile mapping has remained peripheral to mainstream cartography. For a specific group of people with visual impairment, however, tactile maps are the only effective way to obtain a co... ver más

 
Theodoros Oikonomidis, Konstantinos Fouskas and Maro Vlachopoulou    
The spread of coronavirus disease (COVID-19) has triggered a series of responses worldwide ranging from traveling restrictions and shelter-in-place orders to lockdowns, contact tracing, social distancing, and other mitigation measures. To assist with con... ver más
Revista: Future Internet

 
Radek Barvir and Vit Vozenilek    
Graphic map load is a property of a map quantifying the amount of map content. It indicates the visual complexity of the map and helps cartographers to adapt maps and other geospatial visualizations to accomplish their purpose. Generally, map design need... ver más