Resumen
VHF Data Exchange System (VDES) is considered as an important component of the future maritime communication system by the International Maritime Organization (IMO). On the basis of the existing Automatic Identification System (AIS), VDES adds the other two higher capacity subsystems: Application Specific Message (ASM) and VHF Data Exchange (VDE). The Random Access Channel (RACH) of VDE was first introduced in the International Telecommunication Union (ITU) Recommendation M.2092-0. As the slot planning principle of RACH in VDE is by interval, which is significantly different from the continuous slot map for access algorithms in AIS, the existing slot access algorithms cannot meet the requirements of VDE. The simulation results show that the VDE slot map can reduce the normalized throughput of the existing algorithm by 39%. A novel random access algorithm called Adaptive Traffic Load Contention Resolution Diversity Slotted ALOHA (ATL-CRDSA) is proposed in this paper. The algorithm combines the load control strategy and contention resolution scheme to overcome the challenges of the new RACH of VDE. Simulation results show that ATL-CRDSA has remarkable improvement on RACH, making it very efficient and providing low latency of the packets. The insights gained from this study may be of assistance to the Media Access Control (MAC) layer design for upcoming versions of VDES standard.