Resumen
This research tackles the intricate challenges of detecting densely distributed maize leaf diseases and the constraints inherent in YOLO-based detection algorithms. It introduces the GhostNet_Triplet_YOLOv8s algorithm, enhancing YOLO v8s by integrating the lightweight GhostNet (Ghost Convolutional Neural Network) structure, which replaces the YOLO v8s backbone. This adaptation involves swapping the head?s C2f (Coarse-to-Fine) and Conv (Convolutional) modules with C3 Ghost and GhostNet, simplifying the model architecture while significantly amplifying detection speed. Additionally, a lightweight attention mechanism, Triplet Attention, is incorporated to refine the accuracy in identifying the post-neck layer output and to precisely define features within disease-affected areas. By introducing the ECIoU_Loss (EfficiCLoss Loss) function, replacing the original CIoU_Loss, the algorithm effectively mitigates issues associated with aspect ratio penalties, resulting in marked improvements in recognition and convergence rates. The experimental outcomes display promising metrics with a precision rate of 87.50%, a recall rate of 87.70%, and an mAP@0.5 of 91.40% all within a compact model size of 11.20 MB. In comparison to YOLO v8s, this approach achieves a 0.3% increase in mean average precision (mAP), reduces the model size by 50.2%, and significantly decreases FLOPs by 43.1%, ensuring swift and accurate maize disease identification while optimizing memory usage. Furthermore, the practical deployment of the trained model on a WeChat developer mini-program underscores its practical utility, enabling real-time disease detection in maize fields to aid in timely agricultural decision-making and disease prevention strategies.