Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Development of a Control System for Multilink Manipulators on Unmanned Underwater Vehicles Dynamically Positioned over Seafloor Objects

Alexander Konoplin    
Alexander Yurmanov    
Nikita Krasavin and Pavel Piatavin    

Resumen

This article considers an approach to synthesizing a multilevel system to control movements of a multilink manipulator (MM) mounted on an unmanned underwater vehicle (UUV) for performing autonomous manipulative operations in the mode of dynamic positioning over various objects on the seafloor. The system is based on an upgraded method that, using point clouds received from the machine vision systems (MVS), provides high-accuracy determination of the shape and location of the work object relative to UUV. The preset trajectories of the MM working tool are overlaid on the identified surface of the object, with possible silting, fouling or deformation of the latter taken into account. To execute the programmed trajectories with the MM working tool, the following methods have been implemented in software: stabilization of UUV in hovering mode near the object, high-precision control of working tool?s movements, and also corrections of its trajectory taking into account UUV?s displacements relative to the object. The synthesized system has been developed in the C++ programming language. The operation of the system has been numerically simulated using a model of UUV with MM, as well as models of the environment and the target object, in the Matlab/Simulink and V-REP software packages. The results of the study show a high efficiency of the system both in processing sensor information and in providing the dynamic control of movements of an UUV with a MM.

 Artículos similares

       
 
Martin Wynn and Christian Weber    
The development and implementation of information systems strategy in multi-national corporations (MNCs) faces particular challenges?cultural differences and variations in work values and practices across different countries, numerous technology landscap... ver más
Revista: Information

 
Lucio Pinello, Lorenzo Brancato, Marco Giglio, Francesco Cadini and Giuseppe Francesco De Luca    
In recent times, the demand for resilient space rovers has surged, which has been driven by the amplified exploration of celestial bodies such as the Moon and Mars. Recognising the limitations of direct human intervention in such environments, these rove... ver más
Revista: Aerospace

 
Javensius Sembiring, Rianto Adhy Sasongko, Eduardo I. Bastian, Bayu Aji Raditya and Rayhan Ekananto Limansubroto    
This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a p... ver más
Revista: Aerospace

 
María Zamarreño Suárez, Juan Marín Martínez, Francisco Pérez Moreno, Raquel Delgado-Aguilera Jurado, Patricia María López de Frutos and Rosa María Arnaldo Valdés    
The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis us... ver más
Revista: Aerospace

 
Pablo Brusola, Sergio Garcia-Nieto, Jose Vicente Salcedo, Miguel Martinez and Robert H. Bishop    
This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting p... ver más
Revista: Aerospace