Resumen
Autonomous underwater vehicles and remotely operated vehicles (ROVs) are unmanned underwater vehicles widely used in marine environments. Establishing an efficient obstacle avoidance approach in underwater environments remains a challenge for these vehicles. Most studies have relied on simulated results; few have been conducted with vehicles in a real environment. This study used an ROV equipped with a scanning sonar as an experimental platform and applied fuzzy logic control to solve nonlinear and uncertain problems, which are difficult to address using conventional control theory. Using data from the depth and inertial sensors, fuzzy logic control can output defuzzification command values that are passed through a fuzzy inference engine to control ROV motion. Fuzzy logic control was used to evaluate depth and heading degrees in navigation experiments. In heading navigation, scanning sonar was used to detect obstacles in the scanning range. An optimum navigation strategy was also developed to calculate appropriate headings to safely and stably navigate during a mission to attain a predetermined destination. The results indicated that the ROV with fuzzy logic control had superior control stability and obstacle avoidance in an underwater environment.