Resumen
The human hand is involved in many computer vision tasks, such as hand posture estimation, hand movement identification, human activity analysis, and other similar tasks, in which hand detection is an important preprocessing step. It is still difficult to correctly recognize some hands in a cluttered environment because of the complex display variations of agile human hands and the fact that they have a wide range of motion. In this study, we provide a brief assessment of CNN-based object identification algorithms, specifically Densenet Yolo V2, Densenet Yolo V2 CSP, Densenet Yolo V2 CSP SPP, Resnet 50 Yolo V2, Resnet 50 CSP, Resnet 50 CSP SPP, Yolo V4 SPP, Yolo V4 CSP SPP, and Yolo V5. The advantages of CSP and SPP are thoroughly examined and described in detail in each algorithm. We show in our experiments that Yolo V4 CSP SPP provides the best level of precision available. The experimental results show that the CSP and SPP layers help improve the accuracy of CNN model testing performance. Our model leverages the advantages of CSP and SPP. Our proposed method Yolo V4 CSP SPP outperformed previous research results by an average of 8.88%, with an improvement from 87.6% to 96.48%.