Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

A Prediction Model for Lung Cancer Levels Based on Machine Learning

Huu-Huy Ngo    
Hung Linh Le    

Resumen

Among cancers, lung cancer is one of the most dreaded conditions, and it is the leading cause of cancer-related deaths worldwide. Early cancer identification and prediction help prevent and treat cancer efficiently, especially the beginning cancer stage. Therefore, this study presents a prediction model for lung cancer level based on machine learning. Machine learning algorithms are applied as primary methods. Firstly, the dataset collection is implemented; then, feature selection algorithms are used to identify essential features. Secondly, the proposed model applies the machine learning algorithms on two datasets (The full dataset and the dataset of essential features). Finally, experimental results demonstrate that this proposed system has an excellent performance, with 100% and 98.7% accuracy on the full dataset and the dataset of the top three essential features, respectively.

 Artículos similares

       
 
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen    
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision... ver más
Revista: Aerospace

 
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia    
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction... ver más
Revista: Applied Sciences

 
Jiahao Chen, Jiaxin Li, Deqian Zheng, Qianru Zheng, Jiayi Zhang, Meimei Wu and Chaosai Liu    
The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribu... ver más
Revista: Applied Sciences

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Zheng Zhao, Jialing Yuan and Luhao Chen    
Air Traffic Flow Management (ATFM) delay can quantitatively reflect the congestion caused by the imbalance between capacity and demand in an airspace network. Furthermore, it is an important parameter for the ex-post analysis of airspace congestion and t... ver más
Revista: Aerospace