Resumen
Automatic Generation Control (AGC) and Automatic Voltage Control (AVC) are key approaches to frequency and voltage regulation in power systems. However, based on the assumption of decoupling of active and reactive power control, the existing AGC and AVC systems work independently without any coordination. In this paper, a concept and method of hybrid control is introduced to set up an Integrated Coordinated Optimization Control (ICOC) system for AGC and AVC. Concerning the diversity of control devices and the characteristics of discrete control interaction with a continuously operating power system, the ICOC system is designed in a hierarchical structure and driven by security, quality and economic events, consequently reducing optimization complexity and realizing multi-target quasi-optimization. In addition, an innovative model of Loss Minimization Control (LMC) taking into consideration active and reactive power regulation is proposed to achieve a substantial reduction in network losses and a cross iterative method for AGC and AVC instructions is also presented to decrease negative interference between control systems. The ICOC system has already been put into practice in some provincial regional power grids in China. Open-looping operation tests have proved the validity of the presented control strategies.