Resumen
The problem of air pollution in Mexico City is studied through the analysis of a large dataset obtained by an instrumented aircraft during February 1991. These data constitute a unique set in Mexico and provide insight into the vertical structure of the boundary layer and the pollutant species which has not been previously discussed. The results obtained on the evolution and structure of the mixed layer indicate that its height rises from 100 meters during the morning (Sam) to over 2000 meters at 5 pm. Results consistently show that the maximum in ozone concentration is not observed at the surface, but at about 700 m on average above it near midday. This peak, with an average concentration over the observational period of 167 ppb, appears to be a transient feature, with concentrations becoming more uniform with height in the afternoon. The vertical profiles of nitrogen oxides and sulphur dioxide indicate that concentrations are highest during the morning and steadily decrease with height, suggesting that sources for these species are located near the surface, as was expected. There appears to be no correlation between the amount of nitrogen oxides observed during the take-offs and the ozone concentrations observed during landign (2-3 hours later). When the variables are normalized by the mixed layer height the results indicate that the ozone observed is fairly independent of the nitrogen oxide concentrations observed earlier. A reduced range of values of the ratio of ozone accumulated in the mixed layer and the layer height is consistently day found during the observational period. Aerosol particles near the surface show maximum concentration during the morning hours, but in contrast, during the course of the day, there is a marked increase in their concentrations at higher levels in the boundary layer suggesting that possibly gas to particle conversion is responsible for the observed increase.