Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Generalization of FEM Using Node-Based Shape Functions

Kanok-Nukulchai Worsak    
Wong F.T.    
Sommanawat W.    

Resumen

In standard FEM, the stiffness of an element is exclusively influenced by nodes associated with the element via its element-based shape functions. In this paper, the authors present a method that can be viewed as a generalization of FEM for which the influence of a node is not limited by a hat function around the node. Shape functions over an element can be interpolated over a predefined set of nodes around the element. These node-based shape functions employ Kriging Interpolations commonly found in geostatistical technique. In this study, a set of influencing nodes are covered by surrounding layers of elements defined as its domain of influence (DOI). Thus, the element stiffness is influenced by not only the element nodes, but also satellite nodes outside the element. In a special case with zero satellite nodes, the method is specialized to the conventional FEM. This method is referred to as Node-Based Kriging FEM or K-FEM. The K-FEM has been tested on 2D elastostatic, Reissner-Mindlin?s plate and shell problems. In all cases, exceptionally accurate displacement and stress fields can be achieved with relatively coarse meshes. In addition, the same set of Kringing shape functions can be used to interpolate the mesh geometry. This property is very useful for representing the curved geometry of shells. The distinctive advantage of the K-FEM is its inheritance of the computational procedure of FEM. Any existing FE code can be easily extended to K-FEM; thus, it has a higher chance to be accepted in practice.

 Artículos similares

       
 
Dong Min Kim, Soon Ho Hong, Se Hyeon Jeong and Sun Je Kim    
The interest in wind-assisted ship propulsions (WASPs) is increasing to improve fuel efficiency and to reduce greenhouse gas emissions in ships. A rotor sail, one of the typical WASPs, can provide auxiliary propulsive force by rotating a cylinder-shaped ... ver más

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures

 
Yan Dong, Jian Zhang, Shaofeng Zhong and Yordan Garbatov    
The study aims to develop a simplified strength assessment method for the preliminary structural design of a semi-submersible floating offshore wind turbine platform. The method includes load cases with extreme wave load effects and a load case dominated... ver más

 
Fupeng Liu, Jiandong Ma, Zhongzhi Ye, Lijia Wang, Yu Sun, Jianxing Yu, Yuliang Qin, Dongliang Zhang, Wengang Cai and Hao Li    
The reliability of liquefied natural gas (LNG) storage tanks is an important factor that must be considered in their structural design. Concrete is a core component of LNG storage tanks, and the geometric uncertainty of concrete aggregate material has a ... ver más