Resumen
Hygroscopic salts exhibiting fast and reversible hydration are promising systems for seasonal heat storage, providing the possibility of storing excess solar energy from the warm season for later use during the cold season. For heat storage, the salt is dehydrated with the available heat, and for heat recovery, the salt is rehydrated. There are many salt hydration transitions and for selecting the most suited ones with respect to the envisaged use cases, temperatures of dehydration and rehydration are needed, as well as the heat storage density. Estimation of these properties requires entropy and enthalpy changes of the transitions. Collections of hydration entropies and enthalpies have been published, but not all data seems reliable for various reasons, and it is often hard to access original sources and experimental conditions. For the necessary data validation, we propose the use of Trouton’s rule, known to hold for the evaporation of classes of fluids. Besides data validation, Trouton’s rule is useful for predicting heat storage densities and vapor pressures when only the transition enthalpy is known. We discuss the validity of Trouton’s rule for salt hydration and ammoniation transitions by theoretical and experimental evidence on the available extensive data collections.